RESOLUTION 17-04 PROPOSED REVISIONS OF ISMA BRAIN DEATH GUIDELINES

Introduced by: Emil Weber, MD

Action: Adopted as Amended

RESOLVED, that ISMA adopt updated brain death guidelines for adults and children, as provided by the Ad Hoc Committee to establish Brain Death Guidelines for the state of Indiana for 2017.
ADULT DIAGNOSTIC CRITERIA-
PATIENTS ABOVE 18 YEARS OF AGE

I. Diagnostic criteria for clinical
diagnosis of brain death.
A. Prerequisites. Brain death is the
absence of clinical brain function
when the proximate cause is known
and demonstrably irreversible.
1. Clinical or neuroimaging
evidence of an acute CNS
catastrophe that is compatible
with the clinical diagnosis of
brain death.
2. Exclusion of complicating
medical conditions that may
confound clinical assessment
(no severe electrolyte, acid-
base, or endocrine disturbance)
3. No drug intoxication or
poisoning.
4. Core temperature $> 32^\circ$ C (90$^\circ$ F).
5. In any patient who has a
recorded core body
temperature of 34° C or lower,
prior to or during
hospitalization, a cerebral blood
flow study must be performed
which shows no cerebral blood
flow before brain death can be
declared by physical
examination. A core body
temperature of 36° C or higher
should be maintained for at
least 24 hours prior to initiating
the brain death examination.

B. The three cardinal findings in brain
death are coma or unresponsiveness,

3. Apnea-testing performed as
follows:
 a) Prerequisites
 I. Core temperature $\geq 36^\circ$ C or 97$^\circ$ F
 II. Systolic blood
 pressure ≥ 90 mm HG
 III. Euvolemia. Option:
 positive fluid balance in
 the previous 6 hours
 IV. Normal pCO$_2$, Option:
 arterial pCO$_2$ ≥ 40 mm Hg
 V. Normal pO$_2$. Option:
 preoxygenation to
 obtain arterial pO$_2$ > 200 mm Hg
 b) Connect a pulse
 oximeter and disconnect
 the ventilator.
 c) .
 c) If oxygen saturation falls
to 85 % or less, abort the
 apnea test and reconnect
 the respirator; otherwise,
 continue with apnea test.
 d) Look closely for
 respiratory movements
 (abdominal or chest
 excursions that produce
 adequate tidal volumes).
 e) Measure arterial pO$_2$, pCO$_2$ and pH after
 approximately 8 minutes
 and reconnect the
 ventilator.
 f) If respiratory movements
 are absent and arterial
 pCO$_2$ is > 60 mm Hg
absence of brainstem reflexes and apnea.

1. Coma or unresponsiveness-no cerebral motor response to pain in all extremities (nail-bed pressure and supraorbital pressure).

2. Absence of brainstem reflexes
 a) Pupils
 i. No response to bright light
 ii. Size: midposition (4mm) to dilated (9mm).
 b) Ocular movement
 i. No oculocephalic reflex (testing only when no fracture or instability of the cervical spine is apparent)
 ii. No deviation of the eyes to irrigation in each ear with 50 ml of cold water (allow 1 minute after injection and at least 5 minutes between testing on each side)
 c) Facial sensation and facial motor response
 i. No corneal reflex to touch with a throat swab
 ii. No jaw reflex
 iii. No grimacing to deep pressure on nail bed, supraorbital ridge, or temporomandibular joint
 d) Pharyngeal and tracheal reflexes
 i. No response after stimulation of the posterior pharynx with tongue blade
 ii. No cough response to bronchial suctioning

 (option: 20 mm Hg increase in pCO₂ over a baseline normal pCO₂), the apnea test result is positive (i.e., it supports the diagnosis of brain death).

g) If respiratory movements are observed, the apnea test result is negative (i.e., it does not support the clinical diagnosis of brain death), and the test should be repeated.

h) Connect the ventilator if, during testing, the systolic blood pressure becomes < 90 mm Hg or the pulse oximeter indicates significant oxygen desaturation and cardiac arrhythmias are present; immediately draw an arterial blood sample and analyze arterial blood gas. If pCO₂ is ≥ 60 mm Hg or pCO₂ increase is < 20 mm Hg over baseline normal pCO₂, the result is indeterminate, and an additional confirmatory test can be considered.

C. Brain Death Declaration in Patients Who Cannot Be Examined.

In patients who cannot be examined to determine brain death because of severe injuries to the face and head or because of high levels of sedative drugs, brain death can be declared after a cerebral arteriogram or isotope cerebral blood flow study demonstrates
unequivocally there is no blood flow to the brain. This study must be read by two (2) radiologists certified in the interpretation of cerebral blood flow studies.

II. Pitfalls in the diagnosis of brain death
The following conditions may interfere with the clinical diagnosis of brain death, so that the diagnosis cannot be made
GUIDELINES FOR DETERMINATION OF BRAIN DEATH

with certainty on clinical grounds alone. Confirmatory tests are recommended.
A. Severe facial trauma
B. Preexisting pupillary abnormalities
C. Toxic levels of any sedative drugs, aminoglycosides, tricyclic antidepressants, anti-cholinergics, antiepileptic drugs, chemotherapeutic agents, or neuromuscular blocking agents
D. Sleep apnea or severe pulmonary disease resulting in chronic retention of CO2
E. Pregnancy is a special situation

III. Clinical observations compatible with the diagnosis of brain death
These manifestations are occasionally seen and should not be misinterpreted as evidence for brainstem function.
A. Spontaneous movements of limbs other than pathologic flexion or extension response
B. Respiratory-like movements (shoulder elevation and adduction, back arching, intercostals expansion without significant tidal volumes)
C. Sweating, blushing, tachycardia
D. Normal blood pressure without pharmacologic support or sudden increases in blood pressure
E. Absence of diabetes insipidus
F. Deep tendon reflexes; superficial abdominal reflexes; triple flexion response
G. Babinski reflex

IV. Confirmatory laboratory tests (options)
Brain death is a clinical diagnosis. A repeat clinical evaluation 6 hours later is recommended, but this interval is arbitrary. A confirmatory test is not mandatory but is desirable in patients in whom specific components of clinical testing cannot be reliably performed or evaluated. It should be emphasized that any of the suggested confirmatory tests may produce similar results in patients with catastrophic brain damage who do not (yet) fulfill the clinical criteria of brain death. The following confirmatory test findings are listed in the order of the most definitive test first. Consensus criteria are identified by individual tests.
A. Conventional angiography. No intracerebral filling at the level of the carotid bifurcation or circle of Willis. The external carotid circulation is patent, and filling of the superior longitudinal sinus may be delayed.
B. Electroencephalography. No electrical activity during at least 30 minutes of recording that adheres to the minimal technical criteria for EEG recording in suspected brain death as adopted by the American Electroencephalographic Society, including 16-channel EEG instruments.
C. Transcranial Doppler ultrasonography
 1. Ten percent of patients may not have temporal insonation windows. Therefore, the initial absence of Doppler signals cannot be interpreted as consistent with brain death.
 2. Small systolic peaks in early systole without diastolic flow or reverberating flow, indicating very high vascular resistance associated with greatly increased intracranial pressure.
D. Technetium-99m hexamethylpropyleneamineoxime (HMPAO or Ceretec) or Technetium 99m (ethyl cysteinate dimmer [ECD, Elicite or Neurorite]) brain perfusion scintigraphy; otherwise known as isotope flow study with brain scan. No flow to brain and no uptake of isotope in brain parenchyma (hollow skull phenomenon) is consistent with brain death.
E. Somatosensory evoked potentials. Bilateral absence of N20-P22 response with median nerve stimulation. The recordings should adhere to the minimal technical criteria for somatosensory evoked potential recording in suspected brain death as adopted by the American Electroencephalographic Society.

V. Medical record documentation (standard)
A. Etiology and irreversibility of condition
B. Absence of brainstem reflexes
C. Absence of motor response to pain
D. Absence of respiration with pCO2 > 60 mm Hg
E. Justification for confirmatory test and result of confirmatory test
F. Optional: Repeat neurologic examination. The interval is arbitrary, but a six-hour period is reasonable.
G. Document repeat neurological examination if performed.

See Checklist for Determination of Brain Death on back
Checklist for Determination of Brain Death in Patients
18 Years of Age or Older in the State of Indiana

<table>
<thead>
<tr>
<th>Patient's Name: __________________________</th>
<th>Room No: __________</th>
<th>Medical Record No: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient's Age: __________</td>
<td>Sex: Male ☐ Female ☐</td>
<td>Attending Physician: __________</td>
</tr>
</tbody>
</table>

Has the cause of patient's present neurological state been determined?
- Yes ☐ No ☐

Have metabolic disease or toxins been ruled out by history?
- Yes ☐ No ☐

Exclude: Hypothermia, Hypotension, depressant medication and correctable metabolic imbalance.

<table>
<thead>
<tr>
<th>Temperature (Fahrenheit)</th>
<th>or (Celsius)</th>
<th>Blood Pressure: __________ mm Hg</th>
</tr>
</thead>
</table>

Barbiturate level and Depressant Medication Survey:

<table>
<thead>
<tr>
<th>Blood drawn Date: __________</th>
<th>Time: __________</th>
<th>Barbiturate Level: __________</th>
</tr>
</thead>
</table>

Significant levels of other depressants:
- Yes ☐ No ☐

Movements

<table>
<thead>
<tr>
<th>Present (✓)</th>
<th>Absent (✓)</th>
</tr>
</thead>
</table>

Spontaneous

- Pupils:
 - Right Pupil: __________ mm
 - Left Pupil: __________ mm

<table>
<thead>
<tr>
<th>Reaction to light</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

Conium Reflex

<table>
<thead>
<tr>
<th>Right Eye</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Left Eye</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

Ponhead Maneuver

<table>
<thead>
<tr>
<th>Response to head turning (will Eye Maneuver)</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

| Response to ice water stimulation (50°F, each ear 3 min., 20°F) | Yes (✓) | No (✓) |

Ponsmodullary Reflexes

<table>
<thead>
<tr>
<th>1. Chewing movements</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2. Tongue movements</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. Larynx movements</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

4. Jaw jerk

5. Syncope to loud noise

Apnea Test

- Patient's temperature must be at least 36.5°C (97°F) to perform this test.

<table>
<thead>
<tr>
<th>Any Breath Taken</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

Confirmatory Tests, if needed — Results

<table>
<thead>
<tr>
<th>Is the patient brain dead?</th>
<th>Yes (✓)</th>
<th>No (✓)</th>
</tr>
</thead>
</table>

**Date: __________ | Time: __________ | Signed: __________ |

Medical Doctor: MD, DO
Pediatric Brain Death Diagnostic Criteria – 37 Weeks Gestational Age to 18 Years of Age

Only qualified physicians caring for seriously ill neonatal patients under one year of age should establish brain death in patients under one year of age.

Issues to be considered and protocol to be followed relating to brain death examination:

1. Determination of brain death in neonates, infants, and children relies on a clinical diagnosis that is based on the absence of neurologic function with a known irreversible cause of coma. Coma and apnea must coexist to diagnose brain death. This diagnosis should be made by physicians who have evaluated the history and completed the neurologic examinations.

2. Prerequisites for initiating a brain death evaluation:
 a. Hypotension, hypothermia, and metabolic disturbances that could affect the neurologic examination must be corrected before examination for brain death.
 b. Sedatives, analgesics, neuromuscular blockers, and anticonvulsant agents should be discontinued for a reasonable time period based on elimination half-life of the pharmacologic agent to ensure they do not affect the neurologic examination. Knowledge of the total amount of each agent (mg/kg) administered since hospital admission may provide useful information concerning the risk of continued medication effects. Blood or plasma levels to confirm high or supratherapeutic levels of anticonvulsants with sedative effects that are not present should be obtained (if available) and repeated as needed or until the levels are in the low to midtherapeutic range. See Medications sheet, Appendix A.
 c. The diagnosis of brain death based on neurologic examination alone should not be made if supratherapeutic or high therapeutic levels of sedative agents are present. When levels are in the low or in the midtherapeutic range, medication effects sufficient to affect the results of the neurologic examination are unlikely. If uncertainty remains, an ancillary study should be performed. In patients who cannot be examined, refer to # 6 of Physical Examination To Determine Brain Death section in the Guidelines For the Determination of Brain Death in Infants and Children in the State of Indiana.
 d. Assessment of neurologic function may be unreliable immediately after cardiopulmonary resuscitation or other severe acute brain injuries and evaluation for brain death should be deferred for a minimum of 24 hours if there are concerns or inconsistencies in the examination.
 e. In any patient who has a recorded core body temperature of 34 °C or less, prior to or during hospitalization, a cerebral blood flow study must be performed which shows no cerebral blood flow before brain death can be declared by physical examination. A core body temperature of 35 °C or greater should be maintained for at least 24 hours prior to initiating brain death examinations.

3. Number of examinations, examiners, and observation periods:
 a. Two examinations including apnea testing with each examination separated by an observation period are required.
 b. The examinations should be performed by different attending physicians involved in the care of the child. The apnea test may be performed by the same physician, preferably the attending physician who is managing ventilator care of the child.
 c. Recommended observation periods:
 1. Twenty-four hours for neonates (37 weeks gestation to term infants 30 days of age)
 2. Twelve hours for infants and children (>30 days to 18 years)
d. The first examination determines the child has met neurologic examination criteria for brain death. The second examination, performed by a different attending physician, confirms that the child has fulfilled criteria for brain death.

e. Physicians attesting to brain death cannot be part of the organ procurement team.

4. Apnea testing:
a. Apnea testing must be performed safely and requires documentation of an arterial Paco₂ 20 mm Hg above the baseline Paco₂ and ≥ 60 mm Hg with no respiratory effort during the testing period to support the diagnosis of brain death. Some infants and children with chronic respiratory disease or insufficiency may only be responsive to supranormal Paco₂ levels. In this instance, the Paco₂ level should increase to ≥20 mm Hg above the baseline Paco₂ level.

b. If the apnea test cannot be performed as a result of a medical contraindication or cannot be completed because of hemodynamic instability, desaturation to <85%, or an inability to reach a Paco₂ of ≥60 mm Hg, an ancillary study should be performed.

5. Ancillary studies:
a. Ancillary studies (electroencephalography, cerebral angiography, and radionuclide cerebral blood flow) are not required to establish brain death unless the clinical examination or apnea test cannot be completed.

b. Radionuclide cerebral blood flow study must be performed with a lipophilic isotope. Both dynamic and static phases of the study must be performed. Two of these isotopes available in the United States are:

 1. Technetium – 99m hexamethylene propylene-aminocysteine (HMPAO or Cerect)

 2. Technetium – 99m ethyl cysteinate dimer (ECDD, Bicistat, or Neuroline)

c. An EEG (electroencephalogram) demonstrating electroencephalographic silence in the absence of other causative factors (i.e. drugs) is supportive of brain death.

d. Ancillary studies are not a substitute for the neurologic examination.

e. It must be recognized that both EEG and cerebral blood flow studies are less sensitive and less reliable in infants <30 days of age. A cerebral blood flow may be preferred over EEG in this age group.

f. For all age groups, ancillary studies can be used to assist the clinician in making the diagnosis of brain death to reduce the observation period or when 1) components of the examination or apnea testing cannot be completed safely as a result of the underlying medical condition of the patient; 2) if there is uncertainty about the results of the neurologic examination; or 3) if a medication effect may interfere with evaluation of the patient. If the ancillary study supports the diagnosis, the second examination and apnea testing can then be performed. When an ancillary study is used to reduce the observation period, all aspects of the examination and apnea testing should be completed and documented.

g. When an ancillary study is used because there are inherent examination limitations (i.e., 1-3 in 6d), then components of the examination done initially should be completed and documented.

h. If the ancillary study is equivocal or if there is concern about the validity of the ancillary study, the patient cannot be pronounced dead. The patient should continue to be observed until brain death can be declared on clinical examination criteria and apnea testing or a follow-up ancillary study can be performed to assist with the determination of brain death. A waiting period of 24 hours is recommended before further clinical re-evaluation or repeat ancillary study is performed. Supportive patient care should continue during this time period.

6. Declaration of death

a. The time of death is declared after the second clinical examination and apnea test are completed and confirm brain death.

b. When ancillary studies are used, documentation of components from the second clinical examination that can be completed must remain consistent with brain death. All aspects of the clinical examination, including the apnea test, or ancillary studies must be appropriately documented.
PHYSICAL EXAMINATION TO DETERMINE BRAIN DEATH

Reversible conditions or conditions that can interfere with the neurologic examination must be excluded before brain death testing.

1. Coma.
 The patient must exhibit complete loss of consciousness, vocalization, and volitional activity.
 Patients must lack all evidence of responsiveness. Eye opening or eye movement to noxious stimuli is absent.
 Noxious stimuli should not produce a motor response other than spinally mediated reflexes. The clinical differentiation of spinal responses from retained motor responses associated with brain activity requires expertise.

2. Loss of all brain stem reflexes, including:
 Midposition or fully dilated pupils which do not respond to light.
 Absence of pupillary response to a bright light is documented in both eyes.
 Usually the pupils are fixed in a midsize or dilated position (4-9mm).
 When uncertainty exists, a magnifying glass should be used.
 Absence of movement of bulbar musculature including facial and oropharyngeal muscles.
 Deep pressure on the condyles at the level of the temporomandibular joints and deep pressure at the supraorbital ridge should produce no grimacing or facial muscle movement.
 Absent gag, cough, sucking, and rooting reflex.
 The pharyngeal or gag reflex is tested after stimulation of the posterior pharynx with a tongue blade or suction device. The tracheal reflex is most reliably tested by examining the cough response to tracheal suctioning. The catheter should be inserted into the trachea and advanced to the level of the carina followed by one or two suctioning passes.
 Absent corneal reflexes.
 Absent corneal reflex is demonstrated by touching the cornea with a piece of tissue paper, a cotton swab, or squirts of water. No eyelid movement should be seen. Care should be taken not to damage the cornea during testing.
 Absent oculovestibular reflexes.
 The oculovestibular reflex is tested by irrigating each ear with ice water (caloric testing) after the patency of the external auditory canal is confirmed. The head is elevated to 30 degrees. Each external auditory canal is irrigated (one ear at a time) with approximately 10-50mL of ice water. Movement of the eyes should be absent during 1 minute of observation. Both sides are tested with a minimum interval of five (5) minutes.
3. Apnea.

The patient must have the complete absence of documented respiratory effort (if feasible) by formal apnea attesting demonstrating a Paco₂ ≥ 60 mm Hg and ≥ 20 mm Hg increase above baseline.

Normalization of the pH and Paco₂ measured by arterial blood gas analysis, maintenance of core temperature >35°C, normalization of blood pressure appropriate for the age of the child, and correcting for factors that could affect respiratory effort are a prerequisite to testing.

The patient should be preoxygenated using 100% oxygen for 5-10 minutes before initiating this test.

Intermittent mandatory mechanical ventilation should be discontinued once the patient is well oxygenated and a normal Paco₂ has been achieved.

The patient’s heart rate, blood pressure, and oxygen saturation should be continuously monitored while observing for spontaneous respiratory effort throughout the entire procedure.

Follow-up blood gases should be obtained at 5-10 minute intervals to monitor the rise in Paco₂ while the patient remains disconnected from mechanical ventilation.

If no respiratory effort is observed from the initiation of the apnea test to the time the measured Paco₂ ≥ 60 mm Hg and ≥ 20 mm Hg above the baseline level, the apnea test is consistent with brain death.

The patient should be placed back on mechanical ventilator support and medical management should continue until the second neurologic examination and apnea test confirming brain death is completed.

If oxygen saturations fall <85%, hemodynamic instability limits completion of apnea testing, or a Paco₂ level of ≥ 60 mm Hg cannot be achieved, the infant or child should be placed back on ventilator support with appropriate treatment to restore normal oxygen saturations, normocapnia, and hemodynamic parameters. Another attempt to test for apnea may be performed at a later time or an ancillary study may be pursued to assist with determination of brain death.

Evidence of any respiratory effort is inconsistent with brain death and the apnea test should be terminated.

4. Flaccid tone and absence of spontaneous or induced movements, excluding spinal cord events such as reflex withdrawal or spinal myoclonus.

The patient’s extremities should be examined to evaluate tone by passive range of motion assuming that there are no limitations to performing such an examination (e.g., previous trauma, etc.) and the patient observed for any spontaneous or induced movements.

If abnormal movements are present, clinical assessment to determine whether these are spinal cord reflexes should be done.

5. Brain Death Declaration.

After the second physical examination demonstrates no brain life, the patient is brain dead and is to be declared brain dead at that time.

6. Brain Death Declaration in Patients Who Cannot be Examined

In patients who cannot be examined to determine brain death because of severe injuries to the face and head or because of high levels of sedative drugs, brain death can be declared after a cerebral arteriogram or isotope cerebral blood flow study demonstrates unequivocally no blood flow to the brain. This study must be read by two (2) radiologist certified in the interpretation of cerebral blood flow studies.
DRUG ELIMINATION TABLE TO SERVE AS REFERENCE FOR PRACTITIONERS WHEN DEALING WITH PATIENTS RECEIVING SPECIFIC PHARMACOLOGICAL AGENTS AND WHO ARE UNDERGOING BRAIN DEATH TESTING

APPENDIX A

<table>
<thead>
<tr>
<th>Medication</th>
<th>Infants/Children Elimination Half-Life</th>
<th>Neonates Elimination Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous induction, anesthetic, and sedative agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiopental</td>
<td>Adults: 3-11.5 hrs (shorter half life in children)</td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td>2.5 hrs</td>
<td></td>
</tr>
<tr>
<td>Etomidate</td>
<td>2.6-3.5 hrs</td>
<td></td>
</tr>
<tr>
<td>Midazolam</td>
<td>2.9-4.5 hrs</td>
<td>4-12 hrs</td>
</tr>
<tr>
<td>Propofol</td>
<td>2-8 mins, terminal half-life 200 mins (range, 300-700 mins)</td>
<td></td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>Terminal half-life 83-159 mins</td>
<td>Infants have faster clearance</td>
</tr>
<tr>
<td>Antiepileptic drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Infants: 20-133 hrs*</td>
<td>45-500 hrs*</td>
</tr>
<tr>
<td></td>
<td>Children 37-73 hrs*</td>
<td></td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>25 hrs*</td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td>11-55 hrs*</td>
<td>63-88 hrs*</td>
</tr>
<tr>
<td>Diazepam</td>
<td>1 mos. to 2 yrs: 40-50 hrs</td>
<td>50-95 hrs</td>
</tr>
<tr>
<td></td>
<td>2-12 yrs: 15-21 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-16 yrs: 16-20 hrs</td>
<td></td>
</tr>
<tr>
<td>Lorazepam</td>
<td>Infants: 40.2 hrs (range 18-73 hrs)</td>
<td>40 hrs</td>
</tr>
<tr>
<td></td>
<td>Children: 10.5 hrs (range 6-17 hrs)</td>
<td></td>
</tr>
<tr>
<td>Clonazepam</td>
<td>22-33 hrs</td>
<td></td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Children <2 months: 7-13 hrs*</td>
<td>10-67 hrs*</td>
</tr>
<tr>
<td></td>
<td>Children 2-14 yrs: mean 9 hrs, range, 3.5-20 hrs</td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>Children 4-12 yrs: 5 hrs</td>
<td></td>
</tr>
<tr>
<td>Intravenous narcotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphine sulfate</td>
<td>Infants 1-3 months: 6.2 hrs (5-10 hrs)</td>
<td>7.6 hrs (range, 4.5-13.3 hrs)</td>
</tr>
<tr>
<td></td>
<td>6 months to 2.5 yrs: 2.9 hrs (1.4-7.8 hrs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children: 1-2 hrs</td>
<td></td>
</tr>
<tr>
<td>Meperidine</td>
<td>Infants <3 months: 8.2-10.7 hrs (range, 4.9-31.7 hrs); Infants 3-18 months: 2.3 hrs</td>
<td>23 hrs (range, 12-39 hrs)</td>
</tr>
<tr>
<td></td>
<td>Children: 5-8 yrs: 3 hrs</td>
<td></td>
</tr>
<tr>
<td>Fentanyl</td>
<td>5 months to 4.5 yrs: 2.4 hrs (mean); 0.5-14 yrs: 21 hrs (range, 11.56 hrs for long-term infusions)</td>
<td>1-15 hrs</td>
</tr>
<tr>
<td>Sufentanil</td>
<td>Children 2-8 yrs: 97 ± 42 mins</td>
<td>382-1,162 mins</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinylcholine</td>
<td>5-10 mins; prolonged duration of action in patients with pseudocholinesterase deficiency or mutation</td>
<td></td>
</tr>
<tr>
<td>Pancuronium</td>
<td>110 mins</td>
<td>65 mins</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>41 mins</td>
<td></td>
</tr>
<tr>
<td>Atracurium</td>
<td>17 mins</td>
<td>20 mins</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>3-12 months: 1.3 ± 0.5 hrs 1 to <3 yrs: 1.1 ± 0.7 hrs 3 to <8 yrs: 0.8 ± 0.3 hrs Adults: 1.4-2.4 hrs</td>
<td></td>
</tr>
</tbody>
</table>

*Elimination half-life does not guarantee therapeutic drug levels for longer-acting medications or medications with active metabolites. Drug levels should be obtained to ensure that levels are in a low to midtherapeutic range before neurologic examination to determine brain death. In some instances, this may require waiting several half-lives and rechecking serum levels of the medication before conducting the brain death examination.

Metabolism of pharmacologic agents may be affected by organ dysfunction, age, patient condition, and hypothermia. Physicians should be aware of total amounts of administered medication that can affect drug metabolism and levels.
Checklist for Documentation of Brain Death in Infants and Children

Two physicians must perform independent examinations separated by specified intervals.

<table>
<thead>
<tr>
<th>Age of Patient</th>
<th>Timing of First Exam</th>
<th>Inter-exam, Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term newborn 37 weeks gestational age and up to 30 days old</td>
<td>First exam may be performed 24 hours after birth OR following cardiopulmonary resuscitation or other severe brain injury.</td>
<td>At least 24 hours</td>
</tr>
<tr>
<td>31 days to 18 years</td>
<td>First exam may be performed 24 hours following cardiopulmonary resuscitation or other severe brain injury</td>
<td>At least 12 hours OR</td>
</tr>
</tbody>
</table>

Section 1. PREREQUISITES for brain death examination and apnea test

A. IRREVERSIBLE AND IDENTIFIABLE Cause of Coma (Please check)
- [] Traumatic brain injury
- [] Anoxic brain injury
- [] Known metabolic disorder
- [] Other (specify)

B. Correction of contributing factors that can interfere with the neurologic examination

<table>
<thead>
<tr>
<th>Examination One</th>
<th>Examination Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Core body temp is over 95°F (35°C)</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>b. Systolic blood pressure or MAP in acceptable range (systolic BP not less than 2 standard deviations below age appropriate norm) based on age</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>c. Sedative/analgic drug effect excluded as a contributing factor</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>d. Metabolic intoxication excluded as a contributing factor</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>e. Neuromuscular blockade excluded as a contributing factor</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
</tbody>
</table>

If all prerequisites are marked YES, then proceed to Section 2. OR
- Confounding variable was present. Ancillary study was therefore performed to document brain death (Section 4).

Section 2. Physical Examination (Please check)

<table>
<thead>
<tr>
<th>Examination One Date / Time</th>
<th>Examination Two Date / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Flaccid tone, patient unresponsive to deep painful stimuli</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>b. Pupils are midposition or fully dilated and light reflexes are absent</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>c. Corneal, cough, gag reflexes are absent</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>d. Oculocephalic reflexes are absent</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>e. Spontaneous respiratory effort while on mechanical ventilation is absent</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
</tbody>
</table>

The _____________________________ (specify) element of the exam could not be performed because _____________________________.

Ancillary study (EEG or radionuclide CBF) was therefore performed to document brain death (Section 4).

Section 3. APNEA Test

<table>
<thead>
<tr>
<th>Examination One Date / Time</th>
<th>Examination Two Date / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>No spontaneous respiratory efforts were observed despite final PaCO₂ ≥ 60 mm Hg and a ≥ 20 mm Hg increase above baseline. (Examination One)</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
<tr>
<td>No spontaneous respiratory efforts were observed despite final PaCO₂ ≥ 60 mm Hg and a ≥ 20 mm Hg increase above baseline. (Examination Two)</td>
<td>[] Yes [] No [] Yes [] No</td>
</tr>
</tbody>
</table>

Apnea test is contraindicated or could not be performed to completion because _____________________________.

Ancillary study (EEG or radionuclide CBF) was therefore performed to document brain death (Section 4).
Section 4. ANCILLARY testing

Ancillary testing is required when:
1. Any components of the examination or apnea testing cannot be completed;
2. If there is uncertainty about the results of the neurologic examination; or
3. If a medication effect may be present.

Ancillary testing can be performed to reduce the inter-examination period; however, a second neurologic examination is required. Components of the neurologic examination that can be performed safely should be completed in close proximity to the ancillary test.

- ☐ Electroencephalogram (EEG) report documents electrocerebral silence OR
 - ☐ Yes ☐ No

- ☐ Cerebral Blood Flow (CBF) study report documents no cerebral perfusion
 - ☐ Yes ☐ No

Section 5. Signatures

Examiner One

I certify that my examination is consistent with cessation of function of the brain and brainstem. Confirmatory exam to follow.

<table>
<thead>
<tr>
<th>(Printed Name)</th>
<th>(Payer # / License #)</th>
<th>(Signature)</th>
<th>(Date mm/dd/yyyy)</th>
<th>(Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examiner Two

I certify that my examination ☐ and/or ancillary test report ☐ confirms unchanged and irreversible cessation of function of the brain and brainstem. The patient is declared brain dead at this time. Date/Time of death: ____________________________

<table>
<thead>
<tr>
<th>(Printed Name)</th>
<th>(Signature)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Specialty)</th>
<th>(Payer # / License #)</th>
<th>(Date mm/dd/yyyy)</th>
<th>(Time)</th>
</tr>
</thead>
</table>
The content of these Brain Death Guidelines is largely excerpted from an article published in *Critical Care Medicine* 2011 Vol. 39, No. 9, entitled “Guidelines for the determination of brain death in infants and children; An update of the 1987 Task Force recommendations.” For documentation and supportive information, including an extensive bibliography, please refer to the aforementioned publication.